The generalized meager ideal and clubs

J. Schilhan

Kurt Gödel Research Center

Hejnice, 2018

J. Schilhan The generalized meager ideal and clubs

 κ will always be a regular uncountable cardinal.

Definition

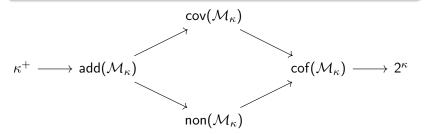
We endow 2^{κ} with the topology generated by basic open sets of the form $[s] = \{x \in 2^{\kappa} : s \subseteq x\}$ for $s \in 2^{<\kappa}$.

Definition

A set $X \subseteq 2^{\kappa}$ is called nowhere dense if $\forall s \in 2^{<\kappa} \exists s' \in 2^{<\kappa} (s \subseteq s' \land [s'] \cap X = \emptyset).$ $X \subseteq 2^{\kappa}$ is meager if it is the union of κ many nowhere dense sets. The ideal of meager sets is denoted with \mathcal{M}_{κ} . As usual we define cardinal characteristics related to this ideal:

Definition

$$\operatorname{\mathsf{add}}(\mathcal{M}_{\kappa}) = \min\{|\mathcal{B}| : \mathcal{B} \subseteq \mathcal{M}_{\kappa} \land \bigcup \mathcal{B} \notin \mathcal{M}_{\kappa}\}$$
$$\operatorname{\mathsf{cov}}(\mathcal{M}_{\kappa}) = \min\{|\mathcal{B}| : \mathcal{B} \subseteq \mathcal{M}_{\kappa} \land \bigcup \mathcal{B} = 2^{\kappa}\}$$
$$\operatorname{\mathsf{non}}(\mathcal{M}_{\kappa}) = \min\{|\mathcal{X}| : \mathcal{X} \subseteq 2^{\kappa} \land \mathcal{X} \notin \mathcal{M}_{\kappa}\}$$
$$\operatorname{\mathsf{cof}}(\mathcal{M}_{\kappa}) = \min\{|\mathcal{B}| : \mathcal{B} \subseteq \mathcal{M}_{\kappa} \land \mathcal{I}(\mathcal{B}) = \mathcal{M}_{\kappa}\}$$



・ 国 > ・ 国 > ・ 国 > …

3

One of the classical theorems that hold true at ω is:

 $\mathfrak{t} \leq \mathsf{add}(\mathcal{M}).$

We generalized this theorem to κ .

Definition

A (κ -)tower is a sequence $\langle A_{\alpha} : \alpha < \delta \rangle$ maximal with the properties:

- $\forall \alpha < \lambda (A_{\alpha} \in [\kappa]^{\kappa})$
- $\forall \alpha < \beta (A_{\beta} \subseteq^* A_{\alpha})$
- $\forall I \in [\delta]^{<\kappa} (\bigcap_{\alpha \in I} A_{\alpha} \in [\kappa]^{\kappa})$

The tower number $\mathfrak{t}(\kappa)$ is the least possible δ .

Assume $\kappa^{<\kappa} = \kappa$, then $\mathfrak{t}(\kappa) \leq \operatorname{add}(\mathcal{M}_{\kappa})$.

In order to prove the theorem we needed to introduce the following notion of club subset of $2^{<\kappa}$:

Definition

Let $C \subseteq 2^{<\kappa}$. Then we call C club iff:

• $\forall s \in 2^{<\kappa} \exists s' \supseteq s(s' \in C)$

• for every sequence $\langle s_i : i < \delta \rangle$ where $\delta < \kappa, s_i \in C$ for every $i < \delta$ and $s_i \subseteq s_j$ for $i < j, \bigcup_{i < \delta} s_i \in C$.

The intersection of less than κ many clubs is still club.

We write $C \subseteq^{**} D$ whenever $C \setminus 2^{<\alpha} \subseteq D$ for some $\alpha < \kappa$.

Sketch of proof of $\mathfrak{t}(\kappa) \leq \operatorname{add}(\mathcal{M}_{\kappa})$.

Assume $\langle Y_{\alpha} : \alpha < \lambda \rangle$ are open dense sets in 2^{κ} and $\lambda < \mathfrak{t}(\kappa)$. We can write $Y_{\alpha} = \bigcup_{s \in S_{\alpha}} [s]$ where S_{α} is upwards closed. We will construct a \subseteq^{**} tower $\langle D_{\alpha} : \alpha < \lambda \rangle$ consisting of clubs on $2^{<\kappa}$, so that $D_{\alpha} \subseteq S_{\alpha}$ for each α .

- Start with $D_0 = S_0$.
- The successor steps are easy: $D_{\alpha+1} = D_{\alpha} \cap S_{\alpha+1}$.
- Limits of cofinality $< \kappa$ are easy by taking intersections.
- For limits of cofinality ≥ κ we use that we have a sequence of length < t(κ) and some combinatorial tricks to get a club ⊆^{**} pseudointersection.

Finally find D a club \subseteq^{**} of $\langle D_{\alpha} : \alpha < \lambda \rangle$. $Y := \bigcap_{i < \kappa} \bigcup_{\substack{s \in D, \\ \mathsf{lth}(s) \ge i}} [s]$

is comeager and subset of every Y_{α} .

The following is a very useful characterization of the bounding number:

Lemma

 $\mathfrak{b}(\kappa) = \min\{|\mathcal{B}| : \mathcal{B} \subseteq \mathcal{C}, \mathcal{B} \text{ has no pseudointersection}\}$ where \mathcal{C} is the set of clubs on κ .

Sketch of proof.

Basic idea: For any $f \in \kappa^{\kappa}$, $C_f = \{\alpha < \kappa : f'' \alpha \subseteq \alpha\}$ is club and $f \leq^* g$ implies $C_g \subseteq^* C_f$. For any C club, $f_C(\alpha) := \min C \cap (\alpha, \kappa)$. $C \subseteq^* D$ implies $f_D \leq^* f_C$.

This also gives a relatively easy proof of:

Theorem $\mathfrak{t}(\kappa) \leq \mathfrak{b}(\kappa).$

and the proof of $\mathfrak{s}(\kappa) \leq \mathfrak{b}(\kappa)$ becomes simple to explain:

Theorem (D. Raghavan, S. Shelah)

 $\mathfrak{s}(\kappa) \leq \mathfrak{b}(\kappa).$

Proof.

Let \mathcal{B} be an unbounded family of clubs and M and elementary submodel of size $|\mathcal{B}|$ containing \mathcal{B} . Suppose $x \in [\kappa]^{\kappa}$ is unsplit over M. Then x generates an ultrafilter $\mathcal{U} = \{y \in M : x \subseteq^* y\}$ over M, κ -complete over M. \mathcal{U} can be "normalized" via a function f, i.e. $\mathcal{V} = \{y \in M : f^{-1}(y) \in \mathcal{U}\}$ is a normal ultrafilter over M. Thus extending the club filter. But x induces a pseudointersection (f''x)of $\mathcal{V} \supseteq \mathcal{B}$. The following is a very useful characterization of the bounding number:

Lemma

 $\mathfrak{b}(\kappa) = \min\{|\mathcal{B}| : \mathcal{B} \subseteq \mathcal{C}, \mathcal{B} \text{ has no pseudointersection}\}$ where \mathcal{C} is the set of clubs on κ .

and dually:

Lemma

$$\mathfrak{d}(\kappa) = \min\{|\mathcal{B}| : \mathcal{B} \subseteq \mathcal{C}, \mathcal{B} \text{ is a base of } \mathcal{C}\}.$$

In this light it is natural to define:

Definition

 $\mathfrak{p}_{2^{<\kappa}} = \min\{|\mathcal{B}| : \mathcal{B} \subseteq \mathcal{C}_{2^{<\kappa}}, \mathcal{B} \text{ has no } \subseteq^{**} \text{ pseudointersection } \}$ where $\mathcal{C}_{2^{<\kappa}}$ is the set of clubs on $2^{<\kappa}$.

Definition

 $\mathfrak{p}_{2^{<\kappa}} = \min\{|\mathcal{B}| : \mathcal{B} \subseteq \mathcal{C}_{2^{<\kappa}}, \mathcal{B} \text{ has no } \subseteq^{**} \text{ pseudointersection } \}$ where $\mathcal{C}_{2^{<\kappa}}$ is the set of clubs on $2^{<\kappa}$.

Lemma

If
$$\kappa^{<\kappa} = \kappa$$
, $\mathfrak{p}_{2^{<\kappa}} \leq \operatorname{add}(\mathcal{M}_{\kappa})$.

Proof.

Given a $\langle Y_{\alpha} : \alpha < \lambda \rangle$ open dense, we find $\langle S_{\alpha} : \alpha < \lambda \rangle$ clubs so that $Y_{\alpha} = \bigcup_{s \in S_{\alpha}} [s]$ for every α . If S is a club \subseteq^{**} pseudointersection of $\langle S_{\alpha} : \alpha < \lambda \rangle$, then $Y := \bigcap_{i < \kappa} \bigcup_{\substack{s \in D, \\ lth(s) \geq i}} [s]$ is comeager and subset of every Y_{α} .

Definition

 $\mathfrak{p}_{2^{<\kappa}} = \min\{|\mathcal{B}| : \mathcal{B} \subseteq \mathcal{C}_{2^{<\kappa}}, \mathcal{B} \text{ has no } \subseteq^{**} \text{ pseudointersection } \}$ where $\mathcal{C}_{2^{<\kappa}}$ is the set of clubs on $2^{<\kappa}$.

Lemma

If
$$\kappa^{<\kappa} = \kappa$$
, $\mathfrak{p}_{2^{<\kappa}} \leq \mathsf{add}(\mathcal{M}_{\kappa})$

Lemma

 $\mathfrak{p}_{2^{<\kappa}} \leq \mathfrak{b}(\kappa).$

Proof.

Given \mathcal{B} a family of clubs on κ with no pseudointersection, we find that $\{\bigcup_{\alpha \in B} 2^{\alpha} : B \in \mathcal{B}\}$ has no \subseteq^{**} pseudointersection.

Assume
$$\kappa^{<\kappa} = \kappa$$
, then $\mathfrak{p}_{2^{<\kappa}} = \min{\mathfrak{b}(\kappa), \operatorname{cov}(\mathcal{M}_{\kappa})}$.

Proof.

Let $\{C_{\alpha} : \alpha < \lambda\}$ be a family of clubs on $2^{<\kappa}$ with $\lambda < \operatorname{cov}(\mathcal{M}_{\kappa}), \mathfrak{b}(\kappa).$ Consider the sets $Y_{\alpha} = \bigcap_{i < \kappa} \bigcup_{s \in C_{\alpha}} [s]$ and let $Y := \bigcap_{\alpha < \lambda} Y_{\alpha}.$ We find a dense subset $\{x_i : i < \kappa\} \subseteq Y.$ Note that for every $i < \kappa$ and every $\alpha < \lambda$, the set $C_{\alpha}^i = \{j < \kappa : x_i \upharpoonright j \in C_{\alpha}\}$ is a club on $\kappa.$ As $\lambda < \mathfrak{b}(\kappa)$, for each $i < \kappa, \mathcal{B}_i = \{C_{\alpha}^i : \alpha < \lambda\}$ has a pseudointersection $\mathcal{B}_i \in [\kappa]^{\kappa}.$ Again applying $\lambda < \mathfrak{b}(\kappa)$ we can find a function $f \in \kappa^{\kappa}$ so that

$$\forall \alpha < \lambda (|\kappa \setminus \{i \in \kappa : B_i \setminus 2^{< f(i)} \subseteq C_{\alpha}^i\}| < \kappa).$$

Proof.

Now enumerate $2^{<\kappa}$ as $\langle s_i : i < \kappa \rangle$ and for every i find $\sigma_i \supseteq s_i$ so that $\sigma_i \in B_j \setminus 2^{<f(j)}$ for some j > i. The collection $C' = \{\sigma_i : i \in \kappa\}$ is unbounded in $2^{<\kappa}$. Furthermore we have that $C' \subseteq^* C_\alpha$ for every α . If C is the closure of C', then $C \subseteq^{**} C_\alpha$ for every α . Thus we have shown that $\{C_\alpha : \alpha < \lambda\}$ has a \subseteq^{**} pseudointersection which is club.

Assume
$$\kappa^{<\kappa} = \kappa$$
, then $\mathfrak{p}_{2^{<\kappa}} = \min\{\mathfrak{b}(\kappa), \operatorname{cov}(\mathcal{M}_{\kappa})\}.$

By an unpublished result of J. Brendle, we have that $\operatorname{add}(\mathcal{M}_{\kappa}) \leq \mathfrak{b}(\kappa)$ (which was previously only known for κ inaccessible). From this we get the following corollary.

Corollary

$$\mathfrak{p}_{2^{<\kappa}} = \mathsf{add}(\mathcal{M}_{\kappa}).$$

Proof.

If
$$\kappa^{<\kappa} = \kappa$$
, then $\min\{\mathfrak{b}(\kappa), \operatorname{cov}(\mathcal{M}_{\kappa})\} = \mathfrak{p}_{2^{<\kappa}} \leq \operatorname{add}(\mathcal{M}_{\kappa}) \leq \mathfrak{b}(\kappa), \operatorname{cov}(\mathcal{M}_{\kappa}).$
If $\kappa^{<\kappa} > \kappa$, then $\kappa^+ \leq \mathfrak{p}_{2^{<\kappa}} \leq \operatorname{add}(\mathcal{M}_{\kappa}) = \kappa^+.$

Assume $\kappa^{<\kappa} = \kappa$, then $\mathfrak{p}_{2^{<\kappa}} = \min\{\mathfrak{b}(\kappa), \operatorname{cov}(\mathcal{M}_{\kappa})\}.$

By an unpublished result of J. Brendle, we have that $\operatorname{add}(\mathcal{M}_{\kappa}) \leq \mathfrak{b}(\kappa)$ (which was previously only known for κ inaccessible). From this we get the following corollary.

Corollary

 $\mathfrak{p}_{2^{<\kappa}} = \mathsf{add}(\mathcal{M}_{\kappa}).$

But the following seems to be open:

Question

Is add(\mathcal{M}_{κ}) < $\mathfrak{b}(\kappa)$ consistent (possibly assuming LC)? I.e. is $\mathfrak{p}_{2^{<\kappa}} < \mathfrak{b}(\kappa)$ consistent?

Question

How much are clubs on κ and on $2^{<\kappa}$ related?

Thanks for your attention!