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κ will always be a regular uncountable cardinal.

Definition

We endow 2κ with the topology generated by basic open sets of
the form [s] = {x ∈ 2κ : s ⊆ x} for s ∈ 2<κ.

Definition

A set X ⊆ 2κ is called nowhere dense if
∀s ∈ 2<κ∃s ′ ∈ 2<κ(s ⊆ s ′ ∧ [s ′] ∩ X = ∅).
X ⊆ 2κ is meager if it is the union of κ many nowhere dense sets.
The ideal of meager sets is denoted with Mκ.
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As usual we define cardinal characteristics related to this ideal:

Definition

add(Mκ) = min{|B| : B ⊆Mκ ∧
⋃
B /∈Mκ}

cov(Mκ) = min{|B| : B ⊆Mκ ∧
⋃
B = 2κ}

non(Mκ) = min{|X | : X ⊆ 2κ ∧ X /∈Mκ}

cof(Mκ) = min{|B| : B ⊆Mκ ∧ I(B) =Mκ}

cov(Mκ)

κ+ add(Mκ) cof(Mκ) 2κ

non(Mκ)
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One of the classical theorems that hold true at ω is:

Theorem

t ≤ add(M).

We generalized this theorem to κ.

Definition

A (κ-)tower is a sequence 〈Aα : α < δ〉 maximal with the
properties:

∀α < λ(Aα ∈ [κ]κ)

∀α < β(Aβ ⊆∗ Aα)

∀I ∈ [δ]<κ(
⋂
α∈I Aα ∈ [κ]κ)

The tower number t(κ) is the least possible δ.
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Theorem

Assume κ<κ = κ, then t(κ) ≤ add(Mκ).

In order to prove the theorem we needed to introduce the following
notion of club subset of 2<κ:

Definition

Let C ⊆ 2<κ. Then we call C club iff:

∀s ∈ 2<κ∃s ′ ⊇ s(s ′ ∈ C )

for every sequence 〈si : i < δ〉 where δ < κ, si ∈ C for every
i < δ and si ⊆ sj for i < j ,

⋃
i<δ si ∈ C .

The intersection of less than κ many clubs is still club.
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We write C ⊆∗∗ D whenever C \ 2<α ⊆ D for some α < κ.

Sketch of proof of t(κ) ≤ add(Mκ).

Assume 〈Yα : α < λ〉 are open dense sets in 2κ and λ < t(κ). We
can write Yα =

⋃
s∈Sα [s] where Sα is upwards closed.

We will construct a ⊆∗∗ tower 〈Dα : α < λ〉 consisting of clubs on
2<κ, so that Dα ⊆ Sα for each α.

Start with D0 = S0.

The successor steps are easy: Dα+1 = Dα ∩ Sα+1.

Limits of cofinality < κ are easy by taking intersections.

For limits of cofinality ≥ κ we use that we have a sequence of
length < t(κ) and some combinatorial tricks to get a club ⊆∗∗
pseudointersection.

Finally find D a club ⊆∗∗ of 〈Dα : α < λ〉. Y :=
⋂

i<κ

⋃
s∈D,

lth(s)≥i
[s]

is comeager and subset of every Yα.
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The following is a very useful characterization of the bounding
number:

Lemma

b(κ) = min{|B| : B ⊆ C,B has no pseudointersection} where C is
the set of clubs on κ.

Sketch of proof.

Basic idea:
For any f ∈ κκ, Cf = {α < κ : f ′′α ⊆ α} is club and f ≤∗ g
implies Cg ⊆∗ Cf .
For any C club, fC (α) := minC ∩ (α, κ). C ⊆∗ D implies
fD ≤∗ fC .

This also gives a relatively easy proof of:

Theorem

t(κ) ≤ b(κ).

J. Schilhan The generalized meager ideal and clubs



and the proof of s(κ) ≤ b(κ) becomes simple to explain:

Theorem (D. Raghavan, S. Shelah)

s(κ) ≤ b(κ).

Proof.

Let B be an unbounded family of clubs and M and elementary
submodel of size |B| containing B.
Suppose x ∈ [κ]κ is unsplit over M. Then x generates an ultrafilter
U = {y ∈ M : x ⊆∗ y} over M, κ-complete over M.
U can be “normalized” via a function f , i.e.
V = {y ∈ M : f −1(y) ∈ U} is a normal ultrafilter over M. Thus
extending the club filter. But x induces a pseudointersection (f ′′x)
of V ⊇ B.
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The following is a very useful characterization of the bounding
number:

Lemma

b(κ) = min{|B| : B ⊆ C,B has no pseudointersection} where C is
the set of clubs on κ.

and dually:

Lemma

d(κ) = min{|B| : B ⊆ C,B is a base of C}.

In this light it is natural to define:

Definition

p2<κ = min{|B| : B ⊆ C2<κ ,B has no ⊆∗∗ pseudointersection }
where C2<κ is the set of clubs on 2<κ.
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Definition

p2<κ = min{|B| : B ⊆ C2<κ ,B has no ⊆∗∗ pseudointersection }
where C2<κ is the set of clubs on 2<κ.

Lemma

If κ<κ = κ, p2<κ ≤ add(Mκ).

Proof.

Given a 〈Yα : α < λ〉 open dense, we find 〈Sα : α < λ〉 clubs so
that Yα =

⋃
s∈Sα [s] for every α.

If S is a club ⊆∗∗ pseudointersection of 〈Sα : α < λ〉, then
Y :=

⋂
i<κ

⋃
s∈D,

lth(s)≥i
[s] is comeager and subset of every Yα.
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Definition

p2<κ = min{|B| : B ⊆ C2<κ ,B has no ⊆∗∗ pseudointersection }
where C2<κ is the set of clubs on 2<κ.

Lemma

If κ<κ = κ, p2<κ ≤ add(Mκ).

Lemma

p2<κ ≤ b(κ).

Proof.

Given B a family of clubs on κ with no pseudointersection, we find
that {

⋃
α∈B 2α : B ∈ B} has no ⊆∗∗ pseudointersection.
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Theorem

Assume κ<κ = κ, then p2<κ = min{b(κ), cov(Mκ)}.

Proof.

Let {Cα : α < λ} be a family of clubs on 2<κ with
λ < cov(Mκ), b(κ).
Consider the sets Yα =

⋂
i<κ

⋃
s∈Cα,
s /∈2<i

[s] and let Y :=
⋂
α<λ Yα.

We find a dense subset {xi : i < κ} ⊆ Y .
Note that for every i < κ and every α < λ, the set
C i
α = {j < κ : xi � j ∈ Cα} is a club on κ.

As λ < b(κ), for each i < κ, Bi = {C i
α : α < λ} has a

pseudointersection Bi ∈ [κ]κ.
Again applying λ < b(κ) we can find a function f ∈ κκ so that

∀α < λ(|κ \ {i ∈ κ : Bi \ 2<f (i) ⊆ C i
α}| < κ).
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Proof.

Now enumerate 2<κ as 〈si : i < κ〉 and for every i find σi ⊇ si so
that σi ∈ Bj \ 2<f (j) for some j > i .
The collection C ′ = {σi : i ∈ κ} is unbounded in 2<κ. Furthermore
we have that C ′ ⊆∗ Cα for every α. If C is the closure of C ′, then
C ⊆∗∗ Cα for every α.
Thus we have shown that {Cα : α < λ} has a ⊆∗∗
pseudointersection which is club.
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Theorem

Assume κ<κ = κ, then p2<κ = min{b(κ), cov(Mκ)}.

By an unpublished result of J. Brendle, we have that
add(Mκ) ≤ b(κ) (which was previously only known for κ
inaccessible). From this we get the following corollary.

Corollary

p2<κ = add(Mκ).

Proof.

If κ<κ = κ, then min{b(κ), cov(Mκ)} = p2<κ ≤ add(Mκ)
≤ b(κ), cov(Mκ).
If κ<κ > κ, then κ+ ≤ p2<κ ≤ add(Mκ) = κ+.
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Theorem

Assume κ<κ = κ, then p2<κ = min{b(κ), cov(Mκ)}.

By an unpublished result of J. Brendle, we have that
add(Mκ) ≤ b(κ) (which was previously only known for κ
inaccessible). From this we get the following corollary.

Corollary

p2<κ = add(Mκ).

But the following seems to be open:

Question

Is add(Mκ) < b(κ) consistent (possibly assuming LC)? I.e. is
p2<κ < b(κ) consistent?

Question

How much are clubs on κ and on 2<κ related?
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Thanks for your attention!
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